Scenic and VerifAI: Tools for Assured AI-Based Autonomy

Sanjit A. Seshia

Edward Kim

UC Berkeley

Daniel J. Fremont

UC Santa Cruz

Atul Acharya

AAA NCNU

Webinar August 20, 2020

Artificial Intelligence (AI) and Autonomy

Computational Systems that attempt to mimic aspects of human intelligence, including especially the ability to learn from experience.

Growing Use of Machine Learning/Artificial Intelligence in Safety-Critical Autonomous Systems

Source: gminsights.com

Growing Concerns about Safety:

- Numerous papers showing that Deep Neural Networks can be easily fooled
- Accidents, including some fatal, involving potential failure of AI/ML-based perception systems in self-driving cars

Can we address the Design & Verification Challenges of AI/ML-Based Autonomy with Formal Methods?

Precise, Programmatic Environment/Scenario Modeling

Mathematical Specification of Requirements and Metrics

Scalable Algorithms for **Verification and Testing**

Methodologies for Provably-Robust System Design

Scenic

VerifAl

High-Level, Probabilistic Programming
Language for Modeling Environment Scenarios

Requirements Specification + Algorithms for Design, Verification, Testing, Debugging

Outline for this Webinar

Part I: Overview

- Challenges for Assurance of Autonomous Driving Systems
- Overview of VerifAl and Scenic
- Case Study on Formal Scenario-Based Testing in Simulation and on the Road

Part II: Tutorial

- Spatial modeling, data generation, and debugging ML-based perception with Scenic
- Spatio-temporal scenario modeling, testing, falsification, debugging, retraining with Scenic and VerifAI

Conclusion & Outlook

Challenges for Assuring Safety of ADS

What We Mean By Safety in Autonomous Driving

Safety → "absence of unreasonable risk"

SAFETY

RISK

ISO 26262

Functional Safety (FuSa)

- Hazards due to E/E system

ISO/PAS 21448

(SOTIF) Safety of the Intended Functionality

- Hazards due to nominal system operation

Risk = f (Severity, Exposure, Controllability)
[ASIL, ISO 26262]

- → Severity
 - types of injuries
- → Exposure
 - frequency of hazards
- → Controllability
 - how much driver can prevent injury

No system has absolutely zero risk

Improving Safety in Automated Driving Systems: Needs

Challenges for safety-critical systems

SENSE → PERCEIVE → PREDICT → PLAN → ACT

Handle complex neural-network based perception and prediction tasks, including planning and control

Toolchain that integrates **design** and **verification** with **data generation** and training/testing of ML components

Simulation is important for complex, real-world scenarios for which real world data is difficult/dangerous

Why Testing ADS is Complex

<u>Verification & Validation</u>: Assurance of "positive risk balance" <u>Scenario-based testing</u> is one standard approach for V&V

Wide variety of functions and scenarios...

NHTSA, EuroNCAP, JNCAP

...lead to high-dimensionality of parameter search

Test matrix

...resulting in high complexity

Operational Design Domain: What and Why

Operating environment within which an ADS can **safely** perform its dynamic driving task (**DDT**)

Formulation

Category / sub-category / attributes Static and dynamic elements Additive / subtractive elements

Requirements

Precisely definable Comprehensible (human / machine) Measurable Monitorable (by ADS / operator)

Boundary conditions

ODD detection / departure Min Risk Condition (MRC) Min Risk Maneuver (MRM) Fail Safe / Fail Operational

ODD Classification

ODD Environmental Dynamic Scenery conditions elements Zones Weather Traffic Drivable area Particulates Subject vehicle Iunctions Illumination Special structures Connectivity Fixed road structures Temporary road structures

Source: NHTSA 13882 ADS Scenario Framework

Source: BSI PAS 1883

Safety Metrics: How is Success / Failure Measured

System performance is context-dependent (mission/scenario/test-case/etc.)

"Disengagement" is not a safety metric

Standards / Proposals...

ANSI / UL 4600 – "Safety Performance Indicators (SPIs)"

IEEE P2846 – "motion control based metrics"

Intel's Responsibility-Sensitive Safety (RSS)

NVIDIA's Safety Force-Field (SFF)

...Convergence

Vehicle Dynamics Based

Min Safe Distance Violation

Proper Response Action

Min Safe Distance Factor

Min Safe Distance Calc Error

Collision Incident

Rules-of-road violation

ADS Active

Human Traffic Control Detection Error Rate

Time to Collision (TTC)

Post-Encroachment Time

Aggressive Driving

Collision Avoidance Capability (CAC)

<u>SPIs</u>

Incident rates
Violation rates

- By human exposure
- By item exposure

Hazard occurrence rates Unmitigated hazard rates

Psychological comfort

rates

ODD departure rates

. . .

Post-deployment defect

rates

Field failure rates

Misclassification rates

. . .

Sources:

- 1. "Driving Safety Performance Assessment Metrics for ADS-equipped Vehicles", Wishart, et al (SAE WCX 2020)
- 2. "Collision Avoidance Capability Metric", Silberling, et al (SAE WCX 2020)

Bridging Simulation and Real World

Testing on road/track is expensive but important, hence

- Need to carefully design road/track tests (e.g. NHTSA, NCAP, IIHS, ...)
- Customize test plans based on ODD, autonomy functions, infra, ...

- Ensure that models in sim are fit for their test purpose
- Ensure match between simulation scenarios and road testing scenarios

- Need fallback options (e.g. MRC) in case safety cannot be assured
- Test boundary conditions very well

Simulation and Formal Methods can Make ADS Testing Efficient and Bridge the Gap with Road Testing

Simulation

- Efficiently search large space
- Create complex interactions safely

Formal methods

- Temporal logic
- Falsification
- Counterexample-guided retraining
- Parameter synthesis

"All models are wrong... but some are useful" - George P. Box

Overview of Scenic and VerifAl

SCENIC: Environment Modeling and Data Generation

- Scenic is a probabilistic programming language defining distributions over scenes/scenarios
- Use cases: data generation, test generation, verification, debugging, design exploration, etc.

Example: Badly-parked car

Image

created

with

GTA-V

Video created with CARLA

[D. Fremont et al., "Scenic: A Language for Scenario Specification and Scene Generation", TR 2018, PLDI 2019.]

VERIFAI: A Toolkit for the Design and Analysis of AI-Based

Systems

[Dreossi et al. CAV 2019, https://github.com/BerkeleyLearnVerify/VerifAI]

Relevant Use Cases for Scenic and VerifAl

- Scenic Programs can specify ODDs and Test Scenarios
- Can specify Safety Properties/Metrics in VerifAl
- Scenic+VerifAl can
 - Automatically generate tests in simulation
 - Automatically find edge cases to safety
 - Generate data for training and testing ML models and perception
 - Automatically synthesize parameters for ML, planning, control
 - Debug and explain the behavior of perception, planning, control systems
 - Bridge the gap between simulation-based assessment and realworld/road testing

- ...

Industrial Case Study:

Formal Scenario-Based Testing in Simulation and the Real World

3-Way Project Collaboration

A. Acharya, P. Wells, X. Bruso

GoMentum Station proving ground 4Active pulley equipment, pedestrian dummy, OxTS IMU, dGPS, etc.

S. A. Seshia, D. Fremont, E. Kim, Y. V. Pant, H. Ravanbakhsh

SCENIC scenario description language, **VerifAI** toolkit for design and

verification of Al based systems

LG Electronics R&D

S. Lemke, Q. Lu, S. Mehta

LGSVL Simulator (open source) LG's research AV with Baidu's Apollo autonomy stack

Key Research Questions

#1 Safety violations in simulation: Do they transfer to the **real world**? How well?

#2 Effective real-world testing: Can we use formally guided simulation to design effective real-world tests?

First use of formal methods for scenario-based testing of AI-based autonomy in both simulation and real world

Fremont, Kim, Pant, Seshia, Acharya, Bruso, Wells, Lemke, Lu, Mehta, "Formal Scenario-Based Testing of Autonomous Vehicles: From Simulation to the Real World", Arxiv e-prints, https://arxiv.org/abs/2003.07739 [appearing ITSC 2020]

Formal Scenario-Based Testing (with Scenic and VerifAl)

Source: Fremont et al., "Formal Scenario-Based Testing of Autonomous Vehicles: From Simulation to the Real World", Intelligent Transportation Systems Conference (ITSC) 2020, to appear. https://arxiv.org/abs/2003.07739

Scenario Overview: Focus on Vulnerable Road Users (VRUs)

+53%

Pedestrian fatalities: 53% increase in the last decade (2009-2019) 2019: ~6500 (estimated)

Of all traffic fatalities, 17% are Pedestrians

Fatalities at night (low-light, limited vision environment)

Source:

GHSA: https://www.thecarconnection.com/news/1127308_pedestrian-deaths-reach-30-year-high-in-2019

IIHS: https://www.iihs.org/topics/pedestrians-and-bicyclists

Test Equipment and Use at AAA GoMentum Testing Grounds

Robotic platform for Test Targets

Scenario Execution

[Shows EuroNCAP VRU AEB]

Scenario Evaluation

Object & Event Detection/Response: Metrics & Evaluation

- Object detection
- Time to collision
- Separation distance
- Deceleration profile
- Autonomy
 Disengagement

Example Scenario: AV making right turn, pedestrian crossing

Pearl Street

Pedestrian

start poin

AV end point

Lincoln MKZ running Apollo 3.5

Region where AV is

expected to yield

Results: Falsification and Test Selection

Results: Does Safety in Simulation -> Safety on the Road?

Unsafe in simulation \rightarrow unsafe on the road: 62.5% (incl. collision) Safe in simulation \rightarrow safe on the road: 93.5% (no collision)

Results: Why did the AV Fail?

Perception Failure: Apollo 3.5 lost track of the pedestrian several times

Results: How well do the trajectories match?

Green – AV real Blue – AV sim

Orange – Ped real Yellow – Ped sim

F1 Run 1

Conclusion

- Scenic allows easy modeling of complex scenarios for AI-based autonomy + associated data generation
- VerifAl covers range of design, verification, and debugging tasks for Al-based autonomy
- ITSC 2020 Case Study: Scenic+VerifAI can be used to bridge the simulation-to-real world testing gap
 - Effectively evaluate safety via formally-guided simulation
 - Reduce expense of real-world testing by orders of magnitude
- Up next: 1 hour tutorial will give further details on Scenic and VerifAI and use cases for both tools

Ongoing Work and Directions

- Compiling a library of scenarios in Scenic
- Evaluation on more complex, higher-dimensional scenarios
- New algorithms for formal verification and synthesis
- Tools for automated analysis/triage of failure cases
- Improvements in track testing equipment and their connection to simulation

and more...

We welcome participation from the community!

https://github.com/BerkeleyLearnVerify/VerifAI https://github.com/BerkeleyLearnVerify/Scenic/

Acknowledgments: Contributors, Co-authors, Collaborators

UC Berkeley

- Johnathan Chiu
- Tommaso Dreossi
- Shromona Ghosh
- Francis Indaheng
- Sebastian Junges
- Kevin Li
- Yash Vardhan Pant
- Hadi Ravanbakhsh
- Jay Shenoy
- Hazem Torfah
- Marcell Vazquez-Chanlatte
- Kesav Viswanadha
- Xiangyu Yue

UC Berkeley

- Kurt Keutzer
- Alberto Sangiovanni-Vincentelli
- Pravin Varaiya
- Alex Kurzhanskiy

UC Santa Cruz

Ellen Kalvan

Boeing

- Dragos Margineantu
- Denis Osipychev

Thank you!

AAA NCNU

- Xantha Bruso
- Paul Wells

LG Electronics

- Steve Lemke
- Shalin Mehta
- Qiang Lu

NASA Ames

- Corina Pasareanu
- Divya Gopinath

• Alangyu Yu