Scenic and VerifAl:

Tools for Assured Al-Based Autonomy
Part Il: Tutorial

Daniel J. Fremont Edward Kim Sanjit A. Seshia

Fo
.

UC Santa Cruz UC Berkeley

Webinar
August 20, 2020

Scenic VerifAl

High-Level, Probabilistic Programming Requirements Specification + Algorithms
Language for Modeling Environment Scenarios for Design, Verification, Testing, Debugging
O https://github.com/BerkeleyLearnVerify/Scenic
GitHub Open-Source Tools https://github.com/BerkeleyLearnVerify/VerifAl
for
)
| Industry Academia Government/ |
Regulators
Improve assurance Use these tools in Evaluate the safety
of the systems you your research of Al-based

build

\ autonomous systems

Share Scenarios and Metrics Develop Corpus of Tools and Data

S. A. Seshia 2

Basic Terminology

S. A. Seshia

Scene: A configuration of objects and agents in physical space,
with associated attributes and behaviors

Concrete Spatial Scenario = Scene

Concrete (Spatio-Temporal) Scenario: A sequence of scenes over
time

Abstract Scenario = Set of Concrete Scenarios

Abstract Scenarios can be Probabilistic, i.e., the set can have an

associated distribution
° .\ Concrete Scenario
o C—

. “a Tesla Model 3 at
P P 1.2m x 4m”

Abstract Scenario
“a car on the road”

SCENIC: A Language for Scenario Specification and Data Generation

e Scenic Program defines a probabilistic abstract scenario
-- distribution over scenes/concrete scenarios

e First created in 2017-18

e Readable, concise syntax for common
geometric and behavioral relationships

e Embedded DSL in Python

e Generative back-end implementing domain-
specific sampling techniques

Bumper-to-Bumper Traffic

(~20 lines of Scenic)

e Blends imperative and declarative programming

[D. Fremont et al., “Scenic: A Language for Scenario Specification and Scene Generation”, TR 2018, PLDI 2019.]
4

Scenic enables modeling Three Types of Constraints

e Use Case: Synthetic Data Generation
— “create traffic images to train this neural network”

e Use Case: Synthesizing Test Stimuli
— “generate edge cases in rush hour traffic scenario”

e Objects should not intersect Hard Constraint
e Usually, be similar to real-world traffic Soft Constraint
e Generate a diverse image/test set Randomness Constraint

from distribution

Scenic and VerifAl are Simulator-Agnostic

CARLA LGSVL L Grand Theft Auto V

X-Plane Flig}

- ————

Outline for this Webinar

Part I: Overview
e Challenges for Assurance of Autonomous Driving Systems
e QOverview of VerifAl and Scenic

e Case Study on Formal Scenario-Based Testing in Simulation and on
the Road

Part Il: Tutorial

e Spatial modeling, data generation, and debugging ML-based
perception with Scenic

e Spatio-temporal scenario modeling, testing, falsification, debugging,
retraining with Scenic and VerifAl

e Qutlook

S. A. Seshia

Tutorial on
Static Environment
Description

Overview of the Tutorial

e Modeling complex spatial relations among objects and agents
o Starter Example : Badly Parked Car Scenario
o Scaled Example : Bumper-to-Bumper Traffic Scenario

e Applications of Scenic
e Modelling temporal relations will be covered in the next part by
Daniel Fremont

Example: a Badly-Parked Car Scenario

Example: a Badly-Parked Car

from carla _models import Car, curb, roadDirection

Example: a Badly-Parked Car

from carla_models import Car, curb, roadDirection

ego = Car

Definition of Car

class Car():
position: Point road
heading: roadDirection self.position
model: CarModel.defaultModel ()
color: Color.defaultCarColor ()
width: self.model.width
height: self.model.height
viewAngle: 120 deg

visibleDistance: 30 # meters

Example: a Badly-Parked Car

from carla_models import Car, curb, roadDirection

ego = Car

1 ,u_

1
1

Example: a Badly-Parked Car

from carla_models import Car, curb, roadDirection

ego = Car

e e S ———————

_ spot = OrientedPoint visible curb
Ly A A »
i class specifier function
P 3

'f

Example: a Badly-Parked Car

from carla_models import Car, curb, roadDirection

ego = Car

——] —— - - —

_ spot = OrientedPoint visible curb
"; ' badAngle = Uniform(-1, 1) * Range(10, 20) deg
N |

uniform distribution uniform distribution
over these discrete over this interval
choices

'f

e

|

{_

Example: a Badly-Parked Car

from carla_models import Car, curb, roadDirection

0.5m 3
: ego = Car
&
A spot = OrientedPoint visible curb
badAngle = Uniform(-1, 1) * Range(10, 20) deg
parkedCar = Car spot 0.5

==

10

Example: a Badly-Parked Car

=

e e S ———————

/s

- e e

'f

0.5m

from carla_models import Car, curb, roadDirection

ego = Car

spot = OrientedPoint visible curb
badAngle = Uniform(-1, 1) * Range(10, 20) deg
parkedCar = Car spot 0.5,

badAngle relative to roadDirection

11

Example: a Badly-Parked Car

Question: How can we generate the badly parked car closer to ego?

12

Enforcing explicit constraints

from carla models import Car, curb, roadDirection

ego = Car

spot = OrientedPoint visible curb
badAngle = Uniform(-1, 1) * Range(10, 20) deg
parkedCar = Car spot 0.5,

badAngle relative to roadDirection

(distance to parkedCar) < 20

13

Scaling up with multiple agents in Scenic

Bumper-to-bumper Traffic Scenes (from Grand Theft Auto V)

i J

Written with less than
20 lines of code!

Citation: Daniel Fremont, et al. “Scenic: A Language for Scenario Specification and Scene Generation,” PLDI 2019 15

Example : Bumper-to-bumper Traffic

def createPlatoonAt(car, numCars, dist=Range(2, 8), shift=Range(-0.5, 0.5), wiggle=Range(-5,5) deg):
lastCar = car

for i in range(numCars-1):

center'==kollow roadDirection from] (lastCar) for resample(dist)

pos = OrientedPoint center shift,
resample (wiggle) relative to roadDirection

lastCar = Car pos

ego = Car
c2 = Car

platoon = createPlatoonAt(c2, 5, dist=Range(2, 8))

c2 h car car car

16

Positioning Objects in Front

Car ego by 20 Car ego by 20

17

Position Specifiers

A Scenic

Specifiers

Point beyond P by -2 @ 1

Getting Started with Scenic

Scenic Tutorial

|2 Guide to Scenic Syntax

Primitive DataTypes el - - - - __ —e ------
Distributions

Object behind P by 2

Objects
Specifiers
Operators

Statements

Scenic Syntax Reference
Supported Simulators
Interfacing to New Simulators Point offset by 1 @ 2

Scenic Internals

Publications Using Scenic

Credits lllustration of the beyond , behind ,and offset by specifiers. Each OrientedPoint (e.g. P)is shown as a bold arrow.

Source: https://scenic-lang.readthedocs.io/en/latest/syntax quide.html

18

https://scenic-lang.readthedocs.io/en/latest/syntax_guide.html

Domain-Specific Sampling Techniques

Prune infeasible
parts of the space
given require
statements

require distance to taxi <= 5

require 15 deg <= (relative
heading of taxi) <= 45 deg

Applications of Scenic

e Exploring system performance

o Generating specialized test sets

e Debugging a known failure

o ldentify the root cause by exploring semantic
space near the scene

e Designing more effective training sets

o Training on hard cases

Application: Training on Hard Cases

e For car detection, a hard case is one car partially occluding another:

21

Application: Training on Hard Cases

e Train on untargeted GTA data (“matrix”) [1], test on our overlapping cars
scenario; then retrain on mixtures of the two [2]

Precision on Precision on
All Testset Testset with Occlusion scenes
Trainset (5k images) 72.9% 62.8%
95% Trainset, 5% Occlusion 73.1% 68.9%

e Performance in the hard case improves, without hurting the typical case

[1] Johnson-Roberson et al., Driving in the Matrix, ICRA 2017
[2] Daniel Fremont, et al. “Scenic: A Language for Scenario Specification and Scene Generation,” PLDI 2019

22

Application: Why did the neural network misdetect?

\

e
it

- Ik

Citation: Edward Kim, et al. “A programmatic and semantic approach to explaining and debugging neural network-based
object detectors,” CVPR 2020 [Oral Presentation]

23

Application: Why did the neural network misdetect?

Misdetection:
87.2%

Misdetection:
34.7%

Failure Scenario

Failure Inducing S St
Rule Extraction

x_coordinate<= -200.76
distance <= 8.84
car model = PRANGER

User’s Scenario

Paren time = (6940
.30 = Car ax 209,

=

Success Image
Generation

. 1Re60)
oN 4 a0

spot = Oriestedboist on visidle curb
Badisgle = (~90,.90) &g

SARAETAY = Car A% wpes

Success Scenario

paran Line e

Success Inducing
Rule Extraction s i

x_coordinate >= -198.1

Prediction Boxes Ground Truth Boxes

Citation: Edward Kim, et al. “A programmatic and semantic approach to explaining and debugging neural network-based
object detectors,” CVPR 2020 [Oral Presentation] 24

Q&A Session

25

Dynamic Scenarios in Scenic

Outline

Scenic can describe dynamic scenarios which evolve over time.

e Specifying initial conditions and parameters for simulations
— Falsification of cyber-physical systems (collision-avoidance case study)

— Analysis & retraining for ML-based systems (runway tracking case study)

e Specifying behaviors of dynamic agents which can react to their
environment

e Composing scenarios in space and time

— Falsification in dynamic environments (pedestrian scenario case study)

Outline

Scenic can describe dynamic scenarios which evolve over time.

e Specifying initial conditions and parameters for simulations
— Falsification of cyber-physical systems (collision-avoidance case study)
— Analysis & retraining for ML-based systems (runway tracking case study)

e Specifying behaviors of dynamic agents which can react to their
environment

e Composing scenarios in space and time

— Falsification in dynamic environments (pedestrian scenario case study)

Case Study: Falsifying a Collision-Avoidance System

Lane
Keeping

ane change
complete

-~

\
\
N 2

\

e — p N

—— . \

\ ¥

N J

.y
—

Cones
Ego Car (AV) Broken Car

Case Study: Falsifying a Collision-Avoidance System

e Question: does the system always avoid a collision?

e Falsification: automated search for inputs causing the system to
violate its specification.

\ \

%\\ > \\

e — \\ ' } \
Cones by 5

Ego Car (AV) Broken Car

Using Scenic to Generate Initial Scenes

e A scene can be the initial condition for a
simulation

Pick location for blockage randomly along curb

blockageSite = OrientedPoint curb

Place traffic cones

spotl = OrientedPoint blockageSite (0.3, 1)
conel = TrafficCone spotl,

(0, 360) deg

Place disabled car ahead of cones
SmallCar spot2 (-1, 0.5) @ (4, 10),
(0, 360) deg

e Can also include parameters for controllers
(e.g. reaction time, how quickly to swerve)

Using Scenic to Generate Initial Scenes

Using Scenic to Generate Initial Scenes

"
¢)

Using Scenic to Generate Initial Scenes

Setting up Falsification in VerifAl

control_params - Struct({
'x_init': Box([-0.05, 0.05]),
'cruising_speed': Box([10.0, 20.0]),
'reaction_time': Box([0.7, 1.00])

})

env_params - Struct({
'broken_car_color': Box([0.5, 1], [0.25
'broken_car_rotation': Box([5.70, 6.28]

, 0.75], [0, 0.5]),
)
})

sample_space - {'control_params':control_params, 'env_params':env_params}
sampler_type
specification ["G(collisioncone® & collisionconel & collisioncone2)"]

falsifier = mtl_falsifier(sample_space-sample_space, sampler_type-sampler_type,
specification-specification)
falsifier.run falsifier()

Falsification

Outline

Scenic can describe dynamic scenarios which evolve over time.

e Specifying initial conditions and parameters for simulations
— Falsification of cyber-physical systems (collision-avoidance case study)

— Analysis & retraining for ML-based systems (runway tracking case study)

e Specifying behaviors of dynamic agents which can react to their
environment

e Composing scenarios in space and time

— Falsification in dynamic environments (pedestrian scenario case study)

12

A Full Design lteration using Scenic & VerifAl

e |n addition to discovering failures,
VerifAl can help debug and fix them

e |ndustrial case study on TaxiNet, a
NN-based taxiing system [CAV 2020]
— Modeling runway scenarios in SCENIC

— Falsifying the system, finding scenarios
when it violates its specification

— Debugging to find distinct failures and
their root causes

— Retraining the system to eliminate
failures and improve performance

13

Counterexample Analysis

e Falsification found several types of failures, e.g. sensitivity to time

1.5

¥ © o gam o
1.0
051 &

0.0

X’
d

|
o
S,
1

Robustness (p) of @eventually

| |
= =
wu o
1 1

|
N
o

7 8 9 10 11 12 13 14 15 16 17 18
Time of Day (6 am to 6 pm)

e Follow-up experiments confirmed root cause is the plane’s shadow

Retraining

e Use VERIFAI to generate

a new training set
(same size as original)

e Obtained much better
performance

ORIGINAL

RETRAINED

15

Retraining

e Eliminated dependence on time of day

15

e

=
o
b3

5.

o
&

3
hy

%

5

0]

s
S 0.0 A
Q

@ —0.5 1

(O]

S

3

o) _1.0-

2 E& _ @ OOO 0 % e o 0)080 <

- i oo ®
_1.5-5,9 0% o & OO% S . — Original (median) - O(a @Og CP%DOOZ?? ° o
@ O . . o [¢'e)
- ° & & ° ¢ % v 00 o, Retrained (THaucln) (Tef'in) o ‘% oe & 0?80)
. 6 7 8 9 10 11 12 13 14 15 16 17 18

Time of Day

e Used cross-entropy method to learn good training distributions

16

Outline

Scenic can describe dynamic scenarios which evolve over time.

e Specifying initial conditions and parameters for simulations
— Falsification of cyber-physical systems (collision-avoidance case study)

— Analysis & retraining for ML-based systems (runway tracking case study)

e Specifying behaviors of dynamic agents which can react to their
environment

e Composing scenarios in space and time

— Falsification in dynamic environments (pedestrian scenario case study)

17

Going Beyond Initial Conditions

e Scenic can also describe dynamic agents which take actions over
time, reacting to a changing environment

e Example: ”"a badly-parked car, which suddenly pulls into the road as
the ego car approaches”

e The dynamic actions of the car are specified by giving it a behavior

parkedCar = Car spot 0.5,
badAngle relative to roadDirection,
PullIntoRoad

18

Behaviors and Actions

e Behaviors are functions running
in parallel with the simulation,
issuing actions at each time step

— e.g. for AVs: set throttle, set
steering angle, turn on turn signal

— Provided by a Scenic library for the
driving domain

— Abstract away details of simulator
interface

e Behaviors can access the state
of the simulation and make
choices accordingly

state

Scenic Simulator

LGSVL,
CARLA,

Behavior 1

actions

Behavior N

behavior FollowLaneBehavior(lane):
while True:
throttle, steering =
take (SetThrottleActlon(throttle),
SetSteerAction(steering))

19

Behaviors and Actions

e Behaviors can call each other

— Can define libraries of behaviors

e Scenic’s driving domain library
— Classes for cars, pedestrians, etc.
— Controllers for simple maneuvers

— API for accessing road network
geometry

behavior FollowLaneBehavior(lane):
while True:
throttle, steering = ..
take (SetThrottleActlon(throttle)
SetSteerAction(steering))

behavior PullIntoRoad():

while (distance from self to ego) > 15:

wailt
do FollowLaneBehavior(ego.lane)

/

Automatically rejects simulation
if ego is notin alane

20

A Simple Scenario: CARLA Challenge Scenario #2
e Based on NHTSA pre-crash typology scenario 25

— Lead car decelerates because of obstacle; ego car must brake

behavior LeadCarBehavior():
brake = Range(0.9, 1)
throttle = Range(0.5, 1)
brakingDistance = Range(5, 10)

while True:
if (distance from self to trash) <= brakingDistance:

take SetBrakeAction(brake), SetThrottleAction(0)

else:
take SetBrakeAction(@), SetThrottleAction(throttle)

21

A Simple Scenario: CARLA Challenge Scenario #2
e Based on NHTSA pre-crash typology scenario 25

— Lead car decelerates because of obstacle; ego car must brake

behavior LeadCarBehavior():
brake = Range(0.9, 1)
throttle = Range(0.5, 1)
brakingDistance = Range(5, 10)
while True:
if (distance from self to trash) <= brakingDistance:
take SetBrakeAction(brake), SetThrottleAction(0)

else:
take SetBrakeAction(@), SetThrottleAction(throttle)
lane = Uniform(*network.lanes)
trash = Trash on lane.centerline

leadCar = Car following roadDirection from trash for Range(-15, -30)

ego = Car following roadDirection from leadCar for Range(-10, -30) .

A Simple Scenario: CARLA Challenge Scenario #2

More Advanced Temporal Constructs

e Interrupts allow adding special cases to behaviors without
modifying their code

behavior FollowLeadCar(=10):
try:
do FollowLaneBehavior(=25)

interrupt when (distance to other) < safety_distance:
do CollisionAvoidance()

e Temporal requirements and monitors allow enforcing constraints
during simulation

require always taxi in lane
require eventually ego can see pedestrian

24

A Worked Example

. havi FollowLeadC =10):
e OAS Voyage Scenario " o; fottovkendcart)
) do FollowLaneBehavior(=25)
2-2-XX-CF-STR-CAR:02 interrupt when (distance to other) < safety_distance:

do CollisionAvoidance()

behavior StopsAndStarts():

e Lead car perlOdlca”V stop_delay = Range(3, 6) seconds
last_stop = 0@
StOpS and starts; ego try: i
do FollowLaneBehavior(=25)
car must brake to interrupt when simulation.currentTime - last_stop > stop_delay:
. . e do FullBraking() for 5 seconds
aVOId COIIISIO” last_stop = simulation.currentTime
ego = Car with behavior FollowLeadCar(=10)
° Cross_p|atform other = Car ahead of ego by 10,
with behavior StopsAndStarts

scenario works in
CARLA and LGSVL

require (Point ahead of ego by 100) in road
terminate when ego.lane is None

25

A Worked Example: CARLA

A Worked Example: LGSVL

27

Outline

Scenic can describe dynamic scenarios which evolve over time.

e Specifying initial conditions and parameters for simulations
— Falsification of cyber-physical systems (collision-avoidance case study)

— Analysis & retraining for ML-based systems (runway tracking case study)

e Specifying behaviors of dynamic agents which can react to their
environment

e Composing scenarios in space and time

— Falsification in dynamic environments (pedestrian scenario case study)

28

Composing Scenarios

e Scenic allows scenarios
to be defined modularly
and combined into more
complex scenarios

e Parallel, sequential, and

more complex forms of
composition

import StopAndStart, BadlyParkedCar

scenario StopStartWithParkedCar():
compose:

do StopAndStart(), BadlyParkedCar()

scenario StopStartThenParkedCar():
compose:

do StopAndStart()
do BadlyParkedCar()

scenario StopStartThenParkedCar():
compose:
try:
do StopAndStart()
override when ...:
do BadlyParkedCar()

29

Outline

Scenic can describe dynamic scenarios which evolve over time.

e Specifying initial conditions and parameters for simulations
— Falsification of cyber-physical systems (collision-avoidance case study)

— Analysis & retraining for ML-based systems (runway tracking case study)

e Specifying behaviors of dynamic agents which can react to their
environment

e Composing scenarios in space and time

— Falsification in dynamic environments (pedestrian scenario case study)

30

ITSC Case Study

e Pedestrian which crosses
the road, hesitating for
some amount of time

e Describe trajectory with 3
parameters:
— Threshold distance
— Time until hesitation
— Length of hesitation

behavior Hesitate():
while ((distance from ego to self)
> self.thresholdDistance):
walt
do WalkForward() for self.walkTime
do Stop() for self.hesitateTime
do WalkForward()

ped = Pedestrian at 14.9@208.2,
facing 80 deg relative to ego,
with behavior Hesitate,

with thresholdDistance Range(10, 20),

with walkTime Range(1.5, 3.5),
with hesitateTime Range(1, 3)

31

Scenic and VerifAl: Summary of Features and Use Cases

/

e (Classes, Objects, Geometry, and
Distributions

e Local Coordinate Systems

e Readable, Flexible Specifiers

e Declarative Hard & Soft Constraints
e Externally-Controllable Parameters

e Agent Actions and Behaviors,
Interrupts, Termination

e Monitors, Temporal Constraints

e Scenario Composition

S. A. Seshia

\

Synthetic Data Generation
Test Generation, Fuzz Testing

Specifying (Safety) Requirements
and Metrics

Falsification (directed search for
bugs, edge cases, etc.)

Debugging and Error Explanation
Data Augmentation

Goal-Directed Parameter
Synthesis

32

Documentation on Scenic and VerifAl — linked from GitHub

Scenic Welcome to Scenic’s documentation!

Search docs

Scenic Tutorial
Guide to Scenic Syntax

Scenic Syntax Reference

Supported Simulators publications page lists additional papers using Scenic.

Interfacing to New Simulators

A VerifAl

Search docs

Getting Started with VerifAl

Scenic Internals
Publications Using Scenic

Credits

Basic Usage
Tutorial / Case Studies

Feature APIs in VerifAl

Search Techniques

Publications Using VerifAl

S. A. Seshia

Scenic is a domain-specific probabilistic programming language for modeling the environments of cyber-physical
systems like robots and autonomous cars. A Scenic program defines a distribution over scenes, configurations of
physical objects and agents; sampling from this distribution yields concrete scenes which can be simulated to
Getting Started with Scenic produce training or testing data.

Scenic was designed and implemented by Daniel J. Fremont, Tommaso Dreossi, Shromona Ghosh, Xiangyu Yue,
Alberto L. Sangiovanni-Vincentelli, and Sanjit A. Seshia. For a description of the language and some of its
applications, see our PLDI 2019 paper; a more in-depth discussion is in Chapters 5 and 8 of this thesis. Our

Docs » Welcome to VerifAl's documentation! ¢) Edit on GitHub

Welcome to VerifAl's documentation!

VerifAl is a software toolkit for the formal design and analysis of systems that include artificial
intelligence (Al) and machine learning (ML) components. VerifAl particularly seeks to address
challenges with applying formal methods to perception and ML components, including those based
on neural networks, and to model and analyze system behavior in the presence of environment
uncertainty. The current version of the toolkit performs intelligent simulation guided by formal
models and specifications, enabling a variety of use cases including temporal-logic falsification
(bug-finding), model-based systematic fuzz testing, parameter synthesis, counterexample analysis,

33

Thank you!

e Scenic and VerifAl are available open source with documentation at:

https://github.com/BerkeleyLearnVerify/Scenic
https://github.com/BerkeleyLearnVerify/VerifAl

e Please complete our (short!) post-webinar survey at
https://forms.gle/79sMYFH8NrTLBOV97
You can also join our mailing list by completing this survey.

e Send us your feedback!

QUESTIONS?

S. A. Seshia

34

Acknowledgments: Contributors, Co-authors, Collaborators

UC Berkeley

S. A. Seshia

Johnathan Chiu
Tommaso Dreossi
Shromona Ghosh
Francis Indaheng
Sebastian Junges
Kevin Li

Yash Vardhan Pant
Hadi Ravanbakhsh
Jay Shenoy

Hazem Torfah
Marcell Vazquez-Chanlatte
Kesav Viswanadha
Xiangyu Yue

UC Berkeley
e Kurt Keutzer

e Alberto Sangiovanni-
Vincentelli

e Pravin Varaiya
e Alex Kurzhanskiy

UC Santa Cruz
e Ellen Kalvan

Boeing
e Dragos Margineantu
e Denis Osipychev

Thank you!

AAA NCNU
e Xantha Bruso

e Paul Wells

LG Electronics

e Steve Lemke
e Shalin Mehta
e Qiang Lu

NASA Ames
e Corina Pasareanu
e Divya Gopinath

35

	VerifAI_Scenic_Webinar_Tutorial-Intro-Conclusion_Aug2020
	Scenic and VerifAI: Tools for Assured AI-Based Autonomy
	Scenic
	Basic Terminology
	Scenic: A Language for Scenario Specification and Data Generation
	Scenic enables modeling Three Types of Constraints
	Scenic and VerifAI are Simulator-Agnostic
	Outline for this Webinar

	Tutorial-static-scenario-description
	Tutorial-dynamic

